

Welcome to flask_dialogflow!

flask_dialogflow is a Flask extension to build Dialogflow [https://dialogflow.com/] agents. It aims to
shine through the following features:

	A familiar Flask extension structure that handles the mundane stuff behind
the scenes

	Robust JSON serialization and deserialization of the entire Dialogflow and
Actions on Google API to native Python classes

	A simple API for high-level Google Assistant features

	Special template features for voice assistants

	Support for multi-platform agents and extensibility to new platforms

	Integration with the Flask CLI and shell

	Helpers to test an agent

	A comprehensive test suite

Here is a quick example:

from flask import Flask
from flask_dialogflow.agent import DialogflowAgent

app = Flask(__name__)
agent = DialogflowAgent(app)

@agent.handle(intent='HelloWorld')
def hello_world(conv):
 conv.ask('Hello world!')
 return conv

For more information, check out the Tutorial and the
API documentation.

	Tutorial
	Installation and setup

	Google APIs and serialization

	Conversations and handlers

	Templating

	Contexts

	Integrations

	Actions on Google

	Testing

	Flask CLI and shell

	API Reference
	Agent object

	Conversation objects

	Contexts and Context Manager

	Integration Conversation objects

	Actions on Google Conversation object

	JSON handling

	Templating

	CLI interface

	Test helper

	Changelog
	Version 0.9.0

Indices and tables

	Index

	Module Index

	Search Page

Tutorial

This tutorial aims to give an overview over the core features. For details on
particular interfaces see the API documentation.

Installation and setup

Install the library from Pip. As usual, it is recommended to install into a
virtualenv:

cd my_project
virtualenv venv
source venv/bin/activate
pip install flask_dialogflow

A Flask app can be initialized with a DialogflowAgent in two ways.
One way is to pass the Flask instance directly to the init method:

app = Flask(__name__)
agent = DialogflowAgent(app)

The other way is to defer initialization until later and the calling
DialogflowAgent.init_app() manually:

app = Flask(__name__)
agent = DialogflowAgent()

agent.init_app(app)

The latter works with application factories [http://flask.pocoo.org/docs/1.0/patterns/appfactories/] and is the recommended approach.
In both cases the Flask app gets:

	A new route that accepts the webhook requests from Dialogflow.

	A second Jinja loader to be able to load the agents responses from a YAML
file.

	A reference to the agent in the Flask.extensions dictionary.

	A reference to the agent in a Flask shell.

The only change that the agent makes to the Flask app is that it sets
Flask.jinja_env.auto_reload to True. This is necessary to enable
template randomization. See Templating for details.

The URL endpoint defaults to / and the templates file to templates.yaml.
Both can be configured in the init method:

agent = DialogflowAgent(
 route='/agent', templates_file='agent/templates.yaml'
)

flask_dialogflow currently supports two versions of the Dialogflow API: v2 and
v2beta1. The latter is, despite its name, a superset of the former and
therefore set as the default version. This means that the conversation objects
will be of type V2beta1DialogflowConversation and that API objects such
as Cards and Images should be imported from the
flask_dialogflow.google_apis.dialogflow_v2beta1 module.

While it is possible to change the version to v2 there is not much point to
this as the difference is minuscule. This option exists mostly to make the
library forward compatible with future Dialogflow versions.

The DialogflowAgent has a debug mode that can be activate via the debug init
param or the flask_dialogflow_DEBUG environment variable. It causes all webhook
requests and responses to be logged to the console (prettified).

Google APIs and serialization

This library uses marshmallow [https://marshmallow.readthedocs.io/en/3.0/index.html] to serialize and deserialize the Dialogflow and
Actions on Google API objects, but this is completely abstracted. The objects
are implemented as dataclasses and each have a corresponding marshmallow schema.
Each class and schema are linked in such a way the entire de-/serialization
process is hidden behind from_json/to_json methods on the classes. These
classes implement the entire Dialogflow (v2, v2beta1) and Actions on Google API
in three modules:

	flask_dialogflow.google_apis.actions_on_google_v2

	flask_dialogflow.google_apis.dialogflow_v2

	flask_dialogflow.google_apis.dialogflow_v2beta1

Here is an example of how it works:

from flask_dialogflow.google_apis.dialogflow_v2beta1 import Image

Deserialization from JSON
Image.from_json(
 {'imageUri': 'https://image.png', 'accessibilityText': 'Image'}
)
Image(image_uri='https://image.png', accessibility_text='Image')

Serialization to JSON
Image(image_uri='https://image.png', accessibility_text='Image').to_json()
{'imageUri': 'https://image.png', 'accessibilityText': 'Image'}

Note

By JSON, we always mean plain Python data structures that
can be handled by json.dumps()/json.loads(), i.e. usually
dictionaries. Pythons type system does unfortunately not allow recursive
types, which is why we type JSON as MutableMapping[str, Any].

This system powers the entire library and can also be used by users. See the
API documentations section on JSON handling for details. Note also
that users will sometimes have to import classes from the API modules directly,
such as when using rich response items like cards or carousels.

The API classes are not documented because they map API interfaces into native
Python classes. Because of that, users will have to consult the original Google
documentations:

	The authoritative source for the Dialogflow API is the Dialogflow
Discovery document [https://www.googleapis.com/discovery/v1/apis/dialogflow/v2beta1/rest].

	A web version of this is available on the
Google Cloud Dialogflow [https://cloud.google.com/dialogflow/docs/reference/rest/v2beta1-overview]
page.

	The Actions on Google API is documented on the
Actions on Google [https://developers.google.com/actions/build/json/]
website.

Since the conversion from API objects (Protobuf messages) to Python classes is
not an exact science, here are conversion rules that we have applied:

	Every API object becomes a Python dataclass.

	CamelCase attribute names are converted to snake_case.

	Names are kept as they are, except for a small number of cases were a
class name is not unique across the API. In these cases the name is
usually prepended with the enclosing messages name.

	All fields are optional unless a field is explicitly documented as
required. In these cases we have set them as required here as well to
avoid some x is None checks.

	Optional fields always default to None, except for lists and dictionaries.
They default to empty collections to again avoid some None checks.

	Oneof fields are implemented as individual, optional attributes.

	Enums become Python enums.

	Structs become Dict[str, Any].

	Numbers are typed as int when either the Discovery document or the
comments in the web documentation clearly state them as such, even though
the web documentation knows only numbers. Otherwise they are floats.

The marshmallow schemas are only used to map the attributes from API objects to
classes. They perform no validation or type conversion, this, if at all, must be
done by the Python classes.

Conversations and handlers

Conversation objects are the core idea of this library. They represent one
turn of the conversation with the user and expose the request attributes as well
as methods to build the response. V2beta1DialogflowConversation is the
specific type that the conversation will be of under the default settings. It
is initialized from the WebhookRequest behind the scenes and handed
over to the appropriate handler function. After the handler has done its job it
is supposed to hand it back to the library, which will render it to a
WebhookResponse, serialize it to JSON and send it back to Dialogflow.

Conversations expose the request attributes as properties, e.g.:

conv.intent # The intent name
conv.parameters # The requests parameters
conv.session # The session id

They also offer methods to build responses:

A simple text response
conv.tell('Hello world!')

Rendering a response from a template
from flask import render_template
conv.tell(render_template('hello'))

Showing a card
from flask_dialogflow.google_apis.dialogflow_v2beta1 import Card
card = Card(title='Beautiful image', image_uri='image.png')
conv.show_card(card)

Conversations also give access to a requests contexts, for that see the
Contexts [https://dialogflow.com/docs/contexts] section.

Conversation handlers implement the core business logic of the agent. They are
functions that accept the conversation object, inspect its request attributes,
perform necessary business logic, build the response and return the conversation
object again. Handlers can be arbitrarily complex as long as they accept the
conversation as their first argument and return it again.

Handlers can of course pass the conversation on to sub handlers. This makes the
data flow easier to understand and test. Here is an example of a slightly more
complex handler setup:

@agent.handle('SelectDate)
def choose_date_handler(conv):
 # Entry point for conversations for the SelectDate intent
 date = parse(conv.parameters['selected_date'])
 if date >= datetime.datetime.now():
 conv = valid_date(conv)
 else:
 conv = invalid_date(conv)
 return conv

def valid_date(conv):
 ... # Business logic
 conv.tell('Date was chosen!')
 return conv

def invalid_date(conv):
 ... # Business logic
 conv.tell('Date is invalid:(')
 return conv

The general idea is always that a handler gets a conversation, examines the
request attributes, passes the conversation on to where the specific
conversation state is best handled, builds the response and eventually
hands the conversation back to the library, which will take care of rendering
it correctly and sending it back.

Conversations are not meant to be inspected, i.e. one should never ‘check’ if
a certain response was already set and then try to do something based on the
result. Responses should be set once where it is appropriate and then not be
touched anymore.

Dialogflow has some constraints on what kind of and how many responses go
together (e.g. only two speech bubbles, one card etc.), but these are not
enforced by the conversation object as they are not always clearly documented
would make the API quite brittle. Users are expected to be familiar with the
Dialogflow API and watch the Dialogflow logs for errors.

Templating

flask_dialogflow uses the Jinja2 [http://jinja.pocoo.org/docs/2.10] templating library just like Flask itself, but
adds two features to make it work better for voice assistants.

The first one is that we expect all templates to be assembled into a single
YAML file. Each key of the file is its own template an can be rendered
independently. They are of course full Jinja templates and can use all features
of the Jinja templating language:

A plain string template
welcome: Hi, welcome to SomeAgent!

A template with a variable and a filter
confirm_delivery: Ok, your delivery will arrive by {{ date|format('%A') }}.

These two would be rendered like any normal Flask template and passed to the
conversations response methods. Since we render templates a lot we typically
alias the render_template function:

from flask import render_template as __

conv.tell(__('welcome'))
conv.tell(__('confirm_delivery', date=datetime.datetime.now())))

The second feature that we add is randomization. For voice assistants it is
typically desirable to vary each speech response somewhat so as not to sound
robotic. flask_dialogflow makes this simple by supporting randomization out of the
box. It can be used by using arrays of different formulations for one template
in the templates file:

welcome:
 - Hi, welcome to SomeAgent!
 - Hi there, SomeAgent here.
 - Hello, here is SomeAgent!

This template is rendered as usual (render_template('welcome')), but one of
the three variations will be chosen at random.

It is also possible to weigh the options by specifying them as two-element
arrays, where the second element is the weight. The weight is optional and
defaults to 1:

welcome:
 - ['Hi, welcome to SomeAgent!', 2]
 - Hi there, SomeAgent here.
 - ['Yo, wazzup? SomeAgent here for you.', 0.5]

In this case the first variant has a probability of ~57% (=2/3.5), the second of
~29% (=1/3.5) and the third of ~14% (0.5/3.5). When using this option care has
to be taken to properly quote the strings so as to not accidentally malform the
array.

Contexts

Contexts [https://dialogflow.com/docs/contexts] are essential to realize complex, multi-turn dialogs. Conversations
expose a requests contexts via the
V2beta1DialogflowConversation.contexts attribute, which returns a
ContextManager that has methods to get, set, check and delete a
context.

Checking if a context is present:

conv.contexts.has('some_ctx')

Or shorter:
'some_ctx' in conv.contexts

Getting a context, returning a flask_dialogflow.context.Context instance:

conv.contexts.get('some_ctx')

Or shorter via attribute access:
conv.contexts.some_ctx

Setting a context:

Setting an empty context with the default lifespan:
conv.contexts.set('some_ctx')

Customizing the lifespan:
conv.contexts.set('some_ctx', lifespan_count=3)

Including context parameters:
conv.contexts.set('some_ctx', lifespan_count=3, some_param='some_value')

Initializing a complex context up front and setting it:
from flask_dialogflow.context import Context
ctx = Context(
 'some_ctx',
 lifespan_count=3,
 parameters={'foo': 'bar'}
)
conv.contexts.set(ctx)

Deleting a context still sends it back in the next response, but with a lifespan
of 0 to ensure that it gets deleted in Dialogflow:

conv.contexts.delete('some_ctx')

Or shorter:
del conv.contexts.some_ctx

Often one would like to have guarantees about the state of certain contexts. It
is therefore possible to register contexts on the agent via
DialogflowAgent.register_context().

Keeping a context around: This ensures that it never expires by resetting its
lifespan to a high value on each request. This happens before the conversation
is passed to the handler, so the handler can still delete the context manually:

agent.register_context('some_ctx', keep_around=True)

This does not create a context when it doesn’t exist. For that use a default
factory, that initialized a context with the results of this factory as the
parameters when it is not part of the request:

This context will be initialized with an empty parameters dict
agent.register_context('some_ctx', default_factory=dict)

This context has some parameters already set
agent.register_context(
 'some_other_ctx', default_factory=lambda: {'foo': 'bar'}
)

Setting both keep_around and default_factory ensures that a context is
always present and conv.contexts.some_ctx never raises an AttributeError.

For complex contexts it is desirable to have the parameters attribute not be a
dictionary, but rather a class instances. This requires that the instance can
be serialized to JSON. Context can therefore be register with a serializer and
deserializer function. The result of the deserializer will be bound to the
parameters attribute when the conversation is initialized. After handling the
serializer will be used to convert the instance back to JSON. This makes it
possible to use arbitrary Python classes as contexts and hence attach business
logic to them.

To make this even easier there is an DialogflowAgent.context decorator
that can be used on JSONType subclasses. It will set the serializer,
deserializer and default_factory automatically (should the default_factory not
be needed it can be set to None). Here is an example of how this can be used
to implement a GameState context for a quiz game:

Implement the game state class and schema
from marshmallow.fields import Int, Str
from flask_dialogflow.json import JSONType, JSONTypeSchema

class _GameStateSchema(JSONTypeSchema):
 questions_answered = Int()
 last_answer = Str()

@agent.context('game_state', keep_around=True)
@dataclass
class GameState(JSONType, schema=_GameStateSchema):
 questions_answered: int = 0
 last_answer: Optional[str] = None

	This ensures that:
	
	The game_state context will always be present.

	It will be correctly initialized if necessary.

	Its lifespan never expires.

	The Context.parameters are an instance of the GameState
class, not a dict.

In a handler this context could be used like this:

@agent.handle('CorrectAnswer')
def handle_correct_answer(conv):
 conv.contexts.game_state.parameters.questions_answered += 1
 conv.contexts.game_state.parameters.last_answer = ...
 return conv

Integrations

Dialogflow is a generic Google Cloud API that can be integrated with a large
number of different platforms. The most well-known of the is Actions on Google
(i.e. the Google Assistant), others are Slack, Facebook Messenger and Telegram.
It is also possible to integrate Dialogflow with custom platforms such as
proprietary chat platforms or third party smart speakers.

flask_dialogflow supports all of these use cases. There is extensive support for
Actions on Google [https://developers.google.com/actions/build/json/] (see below), basic support for the other
integrations and tools to build helpers for custom integrations.

Integrations can send platform-specific data in the webhook request and receive
platform-specific responses in the webhook response, they essentially piggyback
on the Dialogflow webhook protocol. Because of this we give them each its own
conversation object that is accessible via the overall DialogflowConversation
object.

All integration conversations must subclass the
AbstractIntegrationConversation, which ensures that they can be
initialized from a request and rendered to a response. The default
implementation of this interface is GenericIntegrationConversation,
which behaves like a dict. This class is used for all integrations except
Actions on Google, which has a more elaborate class.

Dialogflow’s default integrations [https://cloud.google.com/dialogflow/docs/integrations/] are set up in the conversation by default.
This means that platform-specific responses can be included without further
setup, enabling multi-platform agents out of the box:

conv.facebook['foo'] = 'bar' # Response only for Facebook
conv.slack['bar'] = 'baz' # This is for Slack

What kind of responses the platforms accept depends on them and has to be looked
up in their documentation.

It is also possible to register new integrations via
DialogflowAgent.register_integration. This is useful when the
Dialogflow API is used from a custom system that has additional features.
An example of this would be a custom smart speaker that has a blinking light
that can be controlled via parameters in the response payload. This would be a
case were it is useful to implement a custom conversation class to abstract
this functionality and to register it on the agent.

from flask_dialogflow.integrations import GenericIntegrationConversation

class BlinkingLightSpeakerConv(GenericIntegrationConversation):
 # Subclass the generic conv to get the usual dict behavior

 def blink(times=1):
 # Build the JSON payload that makes the light blink
 self['blink'] = times

agent.register_integration(
 source='blink_speaker',
 integration_conv_cls=BlinkingLightSpeakerConv
)

Now, every DialogflowConversation passed to a handler will have an
instance of this special conversation object that can be used to make
the light blink:

@agent.handle('BlinkTwice')
def blink_twice_handler(conv):
 conv.blink_speaker.blink(times=2)
 # ... other response parts as usual
 return conv

Should the speaker carry data when calling Dialogflow (via the
OriginaDetectIntentRequest.payload), it can be made available via the
conversation class just like any other request attributes. Let’s assume the
speaker would tell the webhook whether the light is currently on or off by
sending {'light_on': True} in the payload. The conversation class could then
make this info available like this:

from flask_dialogflow.integrations import GenericIntegrationConversation

@agent.integration('blink_speaker')
class BlinkingLightSpeakerConv(GenericIntegrationConversation):

 @property
 def light_on(self) -> bool:
 # The GenericIntegrationConversation is already a dict, we
 # simply expose this attribute as a property for
 # convenience
 return self['light_on']

 def turn_light_off(self):
 # Method to turn the light off (assuming the speaker
 # handles this)
 self['light_on'] = False

This can now be used in handler functions as well:

@agent.handle('TurnLightOff')
def turn_light_off_handler(conv):
 if conv.blink_speaker.light_on:
 conv.blink_speaker.turn_light_off()
 return conv

Actions on Google

Actions on Google (AoG) is the most important integration of Dialogflow, many
agents will probably never use another one. Because of this AoG has a fairly
elaborate conversation class that is available via conv.google:
V2ActionsOnGoogleDialogflowConversation. This class should always be
used for AoG in favor of Dialogflow’s generic responses, and when an agent is
only targeted for the Google Assistant it is perfectly fine to use it
exclusively.

Because it works just like the normal conversation, we only highlight the most
important features here, see the API docs for a full reference.

AoG by default sends all responses as SSML. This means that templates can
contain SSML tags and just work:

welcome: Hi there! <audio src="https://some_jingle.mp3"/>

conv.google.tell(__('welcome')) # Plays the jingle

AoG supports system intents that take over the conversation for a brief period
of time and obtain standardized information from the user. System intents are
implemented as methods on the AoG conversation object and are typically named
ask_for_*. for example:

Ask for permission to get the users name
conv.google.ask_for_permission('To greet you by name', 'NAME')

Ask for a confirmation
conv.google.ask_for_confirmation('Do you really want to do this?')

Ask the user to link a third-party OAuth account
conv.google.ask_for_sign_in('To access your Tinder account')

Ask for a selection from a list
from flask_dialogflow.google_apis.actions_on_google_v2 import ListSelect
list_select = ListSelect(...) # Build the ListSelect
conv.google.ask_for_list_selection(list_select)

The response to a system intent is usually included in the
conv.google.inputs array of the next request. The precise format varies and
has to be looked up in the AoG docs [https://developers.google.com/actions/assistant/helpers].

AoG has a user_storage field that makes it possible to persist user information
server side across sessions (thereby differing from Dialogflow contexts,
which are always bound to a session). This field is available under
conv.google.user.user_storage and makes use of the same serialization system
as the contexts. It is by default treated as a dict and de-/serialized with
json.loads/dumps, which means that all of its attributes must be
JSON-serializable.

Should a more elaborate system be needed, such as a custom user storage class,
it can be configured via the DialogflowAgents init params
(aog_user_storage_deserializer, aog_user_storage_serializer,
aog_user_storage_default_factory). The behavior is the same as for the
contexts.

Testing

The DialogflowAgent has a special DialogflowAgent.test_request() method
that can be used to quickly construct webhook requests and route them trough
the agent. The response will be a special WebhookResponse subclass
that makes it easy to make assertions about the response. For example:

Call the Welcome intent
resp = agent.test_request('Welcome')

Assert a text response
assert 'Hi, welcome to SomeAgent!' in resp.text_responses()

Assert that a certain context is present
assert resp.has_context('some_ctx)

Get the context to inspect it in more detail
resp.context('some_ctx')

Note that the helper currently only support the generic Dialogflow responses,
the AoG response have to be inspected manually (resp.payload['google']).

Flask CLI and shell

The agent adds a agent sub command to the Flask CLI [http://flask.pocoo.org/docs/1.0/cli/] that can be used to
quickly get information about the agent. It supports the following commands:

$ flask agent intents
Prints a table with the registered intents and handlers

$ flask agent contexts
Prints a table with the registered contexts

$ flask agent integrations
Prints a table with the registered integration conversation classes

The agent is also available in a flask shell under the agent name. This
in combination with DialogflowAgent.test_request() is the quickest way to
test the agent during development.

API Reference

This part of the documentation covers all the interfaces of flask_dialogflow.

Agent object

The agent is the core object of this library.

	
class flask_dialogflow.agent.DialogflowAgent(app: Optional[flask.app.Flask] = None, version: Optional[str] = 'v2beta1', route: Optional[str] = '/', templates_file: Optional[str] = 'templates.yaml', debug: Optional[bool] = False, aog_user_storage_default_factory: Optional[Callable[[], T]] = <class 'dict'>, aog_user_storage_deserializer: Optional[Callable[[str], T]] = <function loads>, aog_user_storage_serializer: Optional[Callable[[T], str]] = <function dumps>, aog_text_to_speech_as_ssml: Optional[bool] = True)

	Dialogflow agent.

This is the central object that represents the Dialogflow agent and
integrates this library with Flask. It keeps track of registered intent
handlers, contexts and integrations and handles requests behind the scenes.
It initializes a DialogflowConversation for each requests and
hands it over to the corresponding handler, which does the actual business
logic needed to fulfill the request.

	Parameters

	
	app – The Flask app to initialize this agent with.

	version – The version of the Dialogflow API to use. Defaults to
v2beta1, which despite its name appears to be a superset of v2
(i.e. is completely compatible with it).

	route – The URL endpoint under which this agent will be served. Will be
registered on the Flask app to accept POST requests.

	templates_file – A single YAML file with the Jinja templates. See
templating for details. The path must be relative to the Flask
apps root_path.

	debug – Debug mode for the agent. If on, every request and response will
be logged as prettified JSON. Can be set via the flask_dialogflow_DEBUG
environment variable.

	aog_flask_dialogflow_default_factory – The default factory to use for the
user_storage of the AoG integration.

	aog_user_storage_deserializer – The function to deserialize the
user_storage of the AoG integration.

	aog_user_storage_serializer – The function to serialize the user_storage
of the AoG integration.

	aog_text_to_speech_as_ssml – Whether to send text responses for Actions
on Google as SSML by default. This makes it possible to use SSML
directives in templates without additional setup.

	
init_app(app: flask.app.Flask, route: Optional[str] = None, templates_file: Optional[str] = None) → None

	Initialize a Flask app.

This can be used to manually initialize a Flask app when it wasn’t
passed to init. Adds the route, the template loader and a shell context
processor. Sets auto_reload to True on the Jinja env.

	Parameters

	
	app – The Flask app to initialize with this agent.

	route – The URL endpoint for this agent. If None, defaults to the
agents route.

	templates_file – The YAML templates file. If None, defaults to the
agents template file.

	Returns

	None

	
register_handler(intent: str, handler: Callable[[Union[flask_dialogflow.conversation.V2DialogflowConversation, flask_dialogflow.conversation.V2beta1DialogflowConversation]], Union[flask_dialogflow.conversation.V2DialogflowConversation, flask_dialogflow.conversation.V2beta1DialogflowConversation]]) → None

	Register a conversation handler.

Takes the name of an intent (the display_name, i.e. the name it was
given in the Dialogflow console) and registers a handler function for
it. All requests to this intent will then be routed to this handler.

	Parameters

	
	intent – The intent to register the handler for.

	handler – The conversation handler for this intent.

	Returns

	None

	
handle(intent: str)

	Decorator to register conversation handlers.

Example:

@agent.handle('HelloWorld')
def hello_world_handler(conv):
 # This handler will be called for requests to
 # the HelloWorld intent
 conv.ask('Hello world!')
 return conv

	Parameters

	intent – The intent to register the handler for.

	Returns

	The decorator to be applied to a conversation handler.

	
register_integration(source: str, integration_conv_cls: Type[AbstractIntegrationConversation], version: Optional[str] = None, integration_conv_cls_kwargs: Optional[Mapping] = None) → None

	Register an integration conversation class.

This can be used to register conversation classes for custom
integrations, i.e. subclasses of
AbstractIntegrationConversation. The class will then be
available via the standard DialogflowConversation. Should the webhook
request from this integration carry custom payload it too will be
available via conversation object.

Example:

Assume you want to integrate your Dialogflow agent with a custom
speaker that has a blinking light that can be controlled via the
webhook. You could then write a custom conversation class that
abstracts this functionality:

from flask_dialogflow.integrations import GenericIntegrationConversation

class BlinkingLightSpeakerConv(GenericIntegrationConversation):
 # Subclass the generic conv to get the usual dict behavior

 def blink(times=1):
 # Build the JSON payload that makes the light blink
 self['blink'] = times

agent.register_integration(
 source='blink_speaker',
 integration_conv_cls=BlinkingLightSpeakerConv
)

Now, every DialogflowConversation passed to a handler will have an
instance of this special conversation object that can be used to make
the light blink:

@agent.handle('BlinkTwice')
def blink_twice_handler(conv):
 conv.blink_speaker.blink(times=2)
 # ... other response parts as usual
 return conv

The speaker could carry data when calling Dialogflow (via the
OriginaDetectIntentRequest.payload), which can be made
available via the conversation class. Let’s assume the speaker would
tell the webhook whether the light is currently on or off by sending
{'light_on': True} in the payload. The conversation class could
then make this info available like this:

from flask_dialogflow.integrations import GenericIntegrationConversation

class BlinkingLightSpeakerConv(GenericIntegrationConversation):

 @property
 def light_on(self) -> bool:
 # The GenericIntegrationConversation is already a dict, we
 # simply expose this attribute as a property for
 # convenience
 return self['light_on']

 def turn_light_off(self):
 # Method to turn the light off (assuming the speaker
 # handles this)
 self['light_on'] = False

This can now be used in handler functions as well:

@agent.handle('TurnLightOff')
def turn_light_off_handler(conv):
 if conv.blink_speaker.light_on:
 conv.blink_speaker.turn_light_off()
 return conv

	Parameters

	
	source – The integration platform to use this conversation for.

	integration_conv_cls – The conversation class to use for this
integration.

	version – Optional version qualifier for the source.

	integration_conv_cls_kwargs – Kwargs to pass to the conversations
from_webhook_request_payload method.

	Returns

	None

	
integration(source: str, version: Optional[str] = None, **kwargs)

	Decorator version of register_integration().

	Parameters

	
	source – The integration platform to use this conversation for.

	version – Optional version qualifier for the source.

	**kwargs – Kwargs to pass to the conversations
from_webhook_request_payload method.

	
register_context(display_name: str, keep_around: Optional[bool] = False, default_factory: Optional[Callable[[], CtxT]] = None, deserializer: Optional[Callable[[MutableMapping[str, Any]], CtxT]] = None, serializer: Optional[Callable[[CtxT], MutableMapping[str, Any]]] = None) → None

	Register a context.

Registering a context abstracts certain parts of context handling,
making them easier to work with. Most importantly, it makes it possible
to represent the parameters of a context as a class instead of a plain
dictionary and have de-/serialization handled behind the scenes.

	Parameters

	
	display_name – The display name of the context to register.

	keep_around – Ensure that this context never expires by resetting
its lifespan to a high value on each request. This happens
before the handler is called, meaning the context can still be
expired manually. This does not create a context when it
doesn’t already exist, use default_factory for that.

	default_factory – A factory to initialize a context when it is not
present in a request. This function must only return the
context parameters (either a dict or a class instance), it will
be wrapped in a Context object automatically. Setting
this in combination with keep_around ensures that a context
will always be present, i.e. that conv.contexts.some_ctx
never raises an AttributeError.

	deserializer – Function to deserialize the context parameters with.
Context params will be deserialized with json.load, this
function can be used to deserialize them further into a class.
This makes it possible to work with context params as class
instances instead of dicts and to implement custom context
classes with additional business logic. Care has to be taken
though because Dialogflow adds its own fields to contexts,
the deserializer has to be able to ignore them.

	serializer – Function with which the context params will be
serialized to JSON.

	Returns

	None

	
context(display_name: str, **kwargs) → Callable[[Type[CtxT]], Type[CtxT]]

	Decorator version of register_context.

This decorator can be applied to JSONType classes which have
de-/serialization built in and set the correct deserializer/serializer
functions automatically. For details on how the JSONTypes work see the
section on JSON handling. Here is an example how one could realize
a game state context with this:

Implement the game state class and schema
from marshmallow.fields import Int, Str
from flask_dialogflow.json import JSONType, JSONTypeSchema

class _GameStateSchema(JSONTypeSchema):
 questions_answered = Int()
 last_answer = Str()

@agent.context('game_state', keep_around=True)
@dataclass
class GameState(JSONType, schema=_GameStateSchema):
 questions_answered: int = 0
 last_answer: Optional[str] = None

	This ensures that:
	
	The game_state context will always be present.

	It will be correctly initialized if necessary.

	Its lifespan never expires.

	The Context.parameters are an instance of the GameState
class, not a dict.

In a handler this context could be used like this:

@agent.handle('CorrectAnswer')
def handle_correct_answer(conv):
 conv.contexts.game_state.parameters.questions_answered += 1
 conv.contexts.game_state.parameters.last_answer = ...
 return conv

Applying this decorator to a non-JSONType class requires that the
deserializer and serializer are provided manually, which is the same as
calling register_context() directly.

	Parameters

	
	display_name – The display name of the context to register.

	**kwargs – The same kwargs that register_context() takes.

	Returns

	A class decorator for JSONType subclasses.

	
list_handler() → Iterable[Tuple[str, Callable[[Union[flask_dialogflow.conversation.V2DialogflowConversation, flask_dialogflow.conversation.V2beta1DialogflowConversation]], Union[flask_dialogflow.conversation.V2DialogflowConversation, flask_dialogflow.conversation.V2beta1DialogflowConversation]]]]

	List all registered handlers.

	Yields

	Tuples of (intent name, handler function).

	
list_integrations() → Iterable[Tuple[str, Optional[str], flask_dialogflow.integrations.AbstractIntegrationConversation, Optional[Mapping]]]

	List all registered integrations.

	Yields

	Tuples of (source, integration conv class, version, kwargs).

	
list_contexts() → Iterable[flask_dialogflow.context.ContextRegistryEntry]

	List all registered contexts.

	Yields

	ContextRegistryEntry objects that contain information about the
contexts.

	
test_request(*args, **kwargs) → flask_dialogflow.agent.TestWebhookResponse

	Make a test request.

This builds a WebhookRequest from the passed parameters and
processes it like a normal request. Everything that happens between the
deserialization of a requests POST payload and the serialization of
the handlers response will also happen during this test request. It can
thus be used to quickly test the agents request handling end-to-end.

Example:

resp = agent.test_request('HelloWorld')
Builds a request for the 'HelloWorld' intent and passes it
through the agent. resp is now the webhook response that would be
send back to Dialogflow.

This does not involve Flask and does thus also not need an active app
or request context.

	Parameters

	kwargs (args,) – The arguments are the same that
build_webhook_request() takes. The first one is the
intent name.

	Returns

	An instance of TestWebhookResponse, a
WebhookRequest subclass that offers some additional
methods to make assertions about the response.

Conversation objects

Conversation classes are the core abstraction of this library. They come in two
versions for the two supported Dialogflow version, but are, except for some
additional features in v2beta1, completely identical.

	
class flask_dialogflow.conversation.V2DialogflowConversation(webhook_request: Optional[flask_dialogflow.google_apis.dialogflow_v2.WebhookRequest] = None, context_manager: Optional[ContextManager] = None, integration_convs: Optional[Mapping[str, flask_dialogflow.integrations.AbstractIntegrationConversation]] = None)

	The core Dialogflow Conversation object.

This object is the heart of this library. It represents a single turn in a
Dialogflow conversation and is the interface to both the incomint request
data as well as to the response construction methods. This object is
instantiated by flask_dialogflow automatically and then passed to the handler
function matched to this request. The handler function will usually
inspect the request data in more detail, perform some business logic,
maybe update the server-side state (contexts, user storage) and then build
a response before returning the conversation object back to the library.
It will then be rendered into a webhook response and serialized to JSON
behind the scenes.

This class is specific to v2 of the Dialogfow API. There is a corresponding
V2beta1DialogflowConversation for v2beta1. These two are
currently the only supported Dialogflow versions. (v2beta1 appears, despite
its name, to be a superset of v2, there is thus no harm in always using it,
which is why it is the default conversation class.)

The DialogflowConversation does also carry integration-specific
conversation classes to implement features specific to individual
integrations. The most important of them is
V2ActionOnGoogleDialogflowConversation for the Actions on Google
integration. It is registered on the agent by default and always available
under the google attribute. See Integrations for details.

Note that the response methods on this class refer to the generic
Dialogflow responses. Some integrations, particularly Actions on Google,
have their own set of much more elaborate responses. The methods here
should thus only be used when cross-platform compatibility is desired. For
agents that are only used with Actions on Google one should always use the
V2DialogflowConversation.google methods exclusively. The other
integration convs are currently GenericIntegrationConversations,
which behave like dicts. Users can implement their own conversation classes
and register them on the agent to support custom features.

	
property webhook_request

	The WebhookRequest that this conversation represents.

It is usually not necessary and not recommended to interact with this
directly, it is offered as a fallback option to give access to the raw
request data. Modyfing this is highly discouraged and may lead to
unexpected results.

	
property session

	This requests session id.

	
property response_id

	This requests response id.

	
property query_text

	This requests query text (i.e. the text spoken by the user).

	
property language_code

	This requests language code.

	
property intent

	This requests intent (display name).

	
property action

	This requests action.

	
property contexts

	This requests incoming contexts.

This returns a special ContextManager object that provides a
simple API to manage the conversations context state. See its
documentation for details.

	
property parameters

	This requests parameters.

	
property all_required_params_present

	Whether all required parameters for this intent are present.

	
property fallback_level

	This requests fallback level.

Default is 0, the first fallback intent gets level 1. If this is
immediately followed by another fallback intent (i.e. the user was
still not understood) the level is 2 and so on. The next non-fallback
intent resets the level to 0.

It is good design practice to handle the levels differently, see the
Design guidelines [https://designguidelines.withgoogle.com/conversation/conversational-components/errors.html#errors-no-match] for details.

	
property diagnostic_info

	This requests diagnostic info.

	
property intent_detection_confidence

	This requests intent detection confidence.

	
property speech_recognition_confidence

	This requests speech recognition confidence.

	
property sentiment

	This requests sentiment.

	
property source

	This requests source (i.e. the integration platform).

	
property version

	This requests source version (usually only set for AoG).

	
property payload

	This requests integration payload.

This platform-specific payload will be used to initialize the
integration convs. Users should typically access these directly (via
V2DialogflowConversation.google etc.), the raw data is only
included as a fallback option. Modifying it is highly discouraged.

	
property integrations

	The dictionary of integration convs.

The default integrations (AoG, Facebook, Slack ectc) have their own
properties and do not need to access their convs via this dictionary,
but custom integration platforms will. It is a default dict that
returns a GenericIntegrationConversation by default, which
means that new platforms can be used without additional setup.

This class implements a __getattr__ method that looks up attributes in
the integrations mapping. These two lines are therefore equivalent:

conv.integrations['foobar']
conv.foobar # Same thing

	
ask(*texts) → None

	Ask the user something.

The v2 has no endInteraction field, which probably implies that the
session can not be closed manually. v2beta1 has a separate tell()
function that does end the interaction.

	Parameters

	texts – The texts to speak.

	
show_quick_replies(*quick_replies, title: Optional[str] = None) → None

	Show quick replies.

	Parameters

	
	quick_replies – The replies to suggest.

	title – The title of the replies collection.

	
show_card(card: flask_dialogflow.google_apis.dialogflow_v2.Card) → None

	Show a card.

	Parameters

	card – The card to show.

	
show_image(image: flask_dialogflow.google_apis.dialogflow_v2.Image) → None

	Show an image.

	Parameters

	image – The image to show.

	
property google

	The Actions on Google conversation object.

This objects abstracts all AoG-specific features. When AoG is the only
integration where an agent is used it is perfectly fine to use this
exclusively.

	
property facebook

	The Facbook integration conv.

	
property slack

	The Slack integration conv.

	
property telegram

	The Telegram integration conv.

	
property kik

	The Kik integration conv.

	
property skype

	The Skype integration conv.

	
property twilio

	The Twilio integration conv.

	
property twilio_ip

	The TwilioIP integration conv.

	
property line

	The Line integration conv.

	
property spark

	The Spark integration conv.

	
property tropo

	The Tropo integration conv.

	
property viber

	The Viber integration conv.

	
to_webhook_response() → flask_dialogflow.google_apis.dialogflow_v2.WebhookResponse

	Render the WebhookResponse for this conversation.

This is the last step during conversation handling and is usually done
automatically by the framework. Modifying the conversation after the
response has been rendered may lead to unexpected results.

	Returns

	A complete Dialogflow WebhookResponse that can be serialized to
JSON.

	
class flask_dialogflow.conversation.V2beta1DialogflowConversation(webhook_request: Optional[flask_dialogflow.google_apis.dialogflow_v2.WebhookRequest] = None, context_manager: Optional[ContextManager] = None, integration_convs: Optional[Mapping[str, flask_dialogflow.integrations.AbstractIntegrationConversation]] = None)

	The v2beta1 version of the DialogflowConversation.

This has a few additional features, but is otherwise completely identical
to the V2DialogflowConversation.

	
tell(*texts) → None

	Like ask, but the
interaction is ended after it.

	
property alternative_query_results

	Alternative QueryResults from knowledge connectors.

Contexts and Context Manager

Contexts are essential to manage (Dialogflow) server side state. These tools
help in doing that accurately.

	
class flask_dialogflow.context.Context(name: Optional[str] = None, lifespan_count: Optional[int] = None, parameters: CtxT = None)

	A wrapper around the API context.

Adds a display_name property and is parametrizable to give accurate type
hints when using anything else but a dict for the parameters attribute
(i.e. when registering this display name with a context class). Otherwise
exactly the same as the API Context object.

	
property display_name

	Get the contexts display name, i.e. without the session id.

	
classmethod from_context(ctx: flask_dialogflow.google_apis.dialogflow_v2.Context)

	Initialize this class from an API context.

	
class flask_dialogflow.context.ContextManager(contexts: Optional[Iterable[flask_dialogflow.context.Context]] = None, session: Optional[str] = '', context_registry: Optional[flask_dialogflow.context.ContextRegistry] = None)

	Interface to the collections of contexts on a conversation.

Contexts are server-side state that have to be managed from the client,
i.e. this agent. This class represents the collection of contexts of a
Dialogflow conversation and presents a set of methods to manage them in
a predictable way.

This object is what is returned by
V2DialogflowConversation.contexts.

	Parameters

	
	contexts – An iterable of incoming contexts.

	session – This requests session id. Required to build full context
names.

	context_registry – A reference to the context_registry of an agent.

	
get(display_name: str) → flask_dialogflow.context.Context

	Get a context by its display name.

A shorter way to do this is via attribute access:

These two are equivalent:
conv.contexts.get('foo_context')
conv.contexts.foo_context

	Returns

	The complete context object, if present.

	Raises

	KeyError – When the context is not present.

	
set(display_name_or_ctx_instance: Union[str, flask_dialogflow.context.Context], lifespan_count: Optional[int] = None, **parameters) → None

	Set a context.

	Parameters

	
	display_name_or_ctx_instance – Either the display name of the new
context (will be concatenated with the session id) or a
complete Context instance.

	lifespan_count – The lifespan of the new context. None defaults to
Dialogflows default, currently 5.

	parameters – Params for this context, i.e. the context data.

	Returns

	None

	Raises

	ValueError – If either a context instance was given and the a
 separate lifespan or params set or the display name is invalid.

	
delete(display_name: str, keep_in_registry: Optional[bool] = True) → None

	Delete a context.

Deleting a context means settings its lifespan to zero, which will
cause Dialogflow to delete them server side. This is why deleted
contexts will still be included in the next webhook response (with
lifespan 0).

This too works via attribute access:

These two are equivalent:
conv.contexts.delete('foo_context')
del conv.contexts.foo_context

	Parameters

	
	display_name – The display_name of the context to delete.

	keep_in_registry – Keep the context in the agents context registry,
should it have been in there.

	Returns

	None

	Raises

	KeyError – If a context with this name doesn’t exist.

	
has(display_name: str) → bool

	Check whether a context is present.

This does not include deleted contexts, even though they will still be
included in the next webhook response (to set their lifespan to 0).

A shorter version of this is the in operator:

These two are equivalent:
conv.contexts.has('foo_context')
'foo_context' in conv.contexts

	Returns

	True if it is present, false if not.

	
as_list() → List[flask_dialogflow.context.Context]

	Render the current collection of contexts as a list.

This will we called automatically to add the contexts to the
WebhookResponse. Contexts should not be modified after this has been
called.

	Returns

	A list of context objects.

Integration Conversation objects

Dialogflow integrations [https://cloud.google.com/dialogflow/docs/integrations/] get their own conversation objects, which work like
the standard Dialogflow conversation object. They make it possible to include
platform-specific responses, even for new or completely custom platforms.
The default integration conversation is
GenericIntegrationConversation, which works like a dict. It is used
for all integrations that do not have a special conversation class registered.
Actions-on-Google has a custom conversation object that supports AoG’s special
features. It is registered for AoG requests by default.

	
class flask_dialogflow.integrations.AbstractIntegrationConversation

	Interface for integration-specific conversation objects.

This interface mandates methods to initialize a conversation from a webhook
request payload and to render it to JSON for the webhook response. All
custom integration convs must implement this interface.

	
abstract classmethod from_webhook_request_payload(payload: Optional[MutableMapping[str, Any]] = None, **kwargs) → flask_dialogflow.integrations.AbstractIntegrationConversation

	Initialize this conversation from the webhook request payload.

Webhook requests contain platform-specific payload. This payload should
be exposed by the conversation class. This method mandates that the
conv can be instantiated from the payload (optionally with additional
kwargs). The payload may be None or an empty dict, implementations
should be able to handle this.

	Parameters

	
	payload – The webhook request payload for this integration.

	**kwargs – Additional kwargs, which can be set when registering this
integration with an agent.

	Returns

	An instance of this conversation, which will be available via the
DialogflowConversation.

	
abstract to_webhook_response_payload() → MutableMapping[str, Any]

	Render this conversation back to JSON.

This method must render the handled conversation back to JSON to be
included as the integration payload in the webhook response.

	Returns

	The fully processed conversation.

	
class flask_dialogflow.integrations.GenericIntegrationConversation(data: Optional[MutableMapping[str, Any]] = None)

	Generic integration conversation.

This is the default conversation used for all integrations that don’t have
a custom conversation registered. It implements the MutableMapping ABC,
which means it can be treated as a dict.

Actions on Google Conversation object

Actions on Google is currently the only integration platform that has a custom
conversation class. It supports advanced AoG features such as additional rich
responses, system intents, permissions and user storage.

	
class flask_dialogflow.integrations.actions_on_google.V2ActionsOnGoogleDialogflowConversation(app_request: Optional[AppRequest] = None, user_storage_default_factory: Callable[[], T] = <class 'dict'>, user_storage_deserializer: Optional[Callable[[str], T]] = <function loads>, user_storage_serializer: Optional[Callable[[T], str]] = <function dumps>, text_to_speech_as_ssml: Optional[bool] = True)

	Conversation class for the Actions on Google integration.

This class implements all AoG specific features. It is registered as the
integration class for AoG by default and available via the
DialogflowConversation.google attribute. It exposes AoG specific
request attributes and offers methods to build AoG responses. It also
handles the de-/serialization of the AoG user storage.

When a Dialogflow agent is only meant to be used via Actions on Google, all
responses can simply be set on this class. It is however perfectly possible
to use this next to another integration class to realize agents for
multiple platforms.

	
classmethod from_webhook_request_payload(payload: Optional[MutableMapping[str, Any]] = None, **kwargs) → flask_dialogflow.integrations.actions_on_google.V2ActionsOnGoogleDialogflowConversation

	Initialize this conversation from a webhook request payload.

Parses the payload to an AppRequest and initializes the conv.

	Parameters

	
	payload – The OriginalDetectIntentRequest.payload of a
webhook request from AoG.

	**kwargs – Kwargs that init takes.

	
property app_request

	The underlying AppRequest.

Should usually not be needed, but might be useful to access the raw
request data.

	
property user

	The User of this AppRequest.

This returns a special UserFacade object, which wraps the
original User object and adds some more features.

	
property inputs

	The sequence of Inputs of this request.

	
property surface

	The surface Capabilities as a sequence of strings.

I.e. something like ('actions.capability.SCREEN_OUTPUT',
'actions.capability.AUDIO_OUTPUT'). See Surface capabilities [https://developers.google.com/actions/assistant/surface-capabilities] for
more details.

	
property has_screen

	Whether this request has the SCREEN_OUTPUT capability.

	
property available_surfaces

	The available surface capabilities that can be handed off to.

Returns a sequence of the capabilities name, just like
surface.

	
property is_in_sandbox

	Whether this is a sanbox request.

	
ask(*texts) → None

	Ask the user something.

This implies that the session is kept open. Multiple texts will be
concatenated wit a space and end up in one speech bubble. Call this
method multiple times to produce multiple bubbles, but beware that
there is currently a limit of two bubbles.

	Parameters

	texts – The texts to speak.

	
ask_ssml(*texts) → None

	Explicitly ask something in SSML.

This can be used to force SSML when the ssml-by-default option is
turned off. Wraps the text in <speak> tags automatically.

	Parameters

	texts – The texts to speak.

	
tell(*texts) → None

	Tell the user something.

This implies that the session will be closed. Other behavior is the
same as for ask().

	Parameters

	texts – The texts to speak.

	
tell_ssml(*texts) → None

	Explicitly tell something in SSML.

Equivalent of ask_ssml(), session will be closed.

	Parameters

	texts – The texts to speak.

	
display(*texts)

	Set a separate display text on the last text response.

The spoken and the displayed text should normally not diverge too much,
but there might be cases were the spoken text is very colloquical and
a separate display text is desired. This adds a separate display text
to the last text response. Can be used after ask, ask_ssml, tell and
tell_ssml.

	Parameters

	texts – The texts to display.

	Raises

	ValueError – If no text response has been set yet.

	
suggest(*suggestions) → None

	Display suggestion chips.

Can be called once with multiple suggestions or multiple times in a
row or both. Suggestions are kept in the order they are set, but are
not de-duplicated.

	Parameters

	suggestions – The suggestions to display.

	
show_basic_card(basic_card: flask_dialogflow.google_apis.actions_on_google_v2.BasicCard) → None

	Show a BasicCard.

	Parameters

	basic_card – The card to show.

	
show_image(url: str, accessibility_text: str, height: Optional[float] = None, width: Optional[float] = None, image_display_options: Optional[flask_dialogflow.google_apis.actions_on_google_v2.ImageDisplayOptions] = None)

	Show an image.

A plain image can be show as a basic card without title or description.
This is therefore simply a wrapper around show_basic_card().

	Parameters

	
	url – The images URL. Must be HTTPS.

	accessibility_text – The images accessibilitiy text.

	height – The images height.

	width – The images width.

	image_display_options – More detailes ImageDisplayOptions.

	
show_table_card(table_card: flask_dialogflow.google_apis.actions_on_google_v2.TableCard) → None

	Show a TableCard.

	Parameters

	table_card – The card to show.

	
play_media_response(media_response: flask_dialogflow.google_apis.actions_on_google_v2.MediaResponse) → None

	Play a MediaResponse.

	Parameters

	media_response – The media response to play.

	
show_carousel_browse(carousel_browse: flask_dialogflow.google_apis.actions_on_google_v2.CarouselBrowse) → None

	Show a CarouselBrowse.

	Parameters

	carousel_browse – The carousel to show.

	
show_order_update(order_update: flask_dialogflow.google_apis.actions_on_google_v2.OrderUpdate) → None

	Show an OrderUpdate.

	Parameters

	order_update – The order update to show.

	
suggest_link_out(destination_name: str, url: str, url_type_hint: Optional[UrlTypeHint] = None) → None

	Suggest a (web or Android app) link.

	Parameters

	
	destination_name – The title to show on the button.

	url – The URL.

	url_type_hint – Optional hint for the URL, to be used when it is an
Android link.

	
ask_for_permission(reason: str, *permissions)

	Ask for permissions.

	Parameters

	
	reason – The reason for the request.

	permissions – The permissions to request.

	
ask_for_confirmation(request_confirmation_text: str) → None

	Ask for a confirmation.

	Parameters

	request_confirmation_text – The text to confirm.

	
ask_for_sign_in(reason: str) → None

	Ask for sign in to link an OAuth account.

	Parameters

	reason – The reason for the request.

	
ask_for_datetime(request_text: str) → None

	ASk for a datetime.

	Parameters

	request_text – The request text.

	
ask_for_date(request_text: str) → None

	ASk for a date.

	Parameters

	request_text – The request text.

	
ask_for_time(request_text: str) → None

	ASk for a time.

	Parameters

	request_text – The request text.

	
ask_for_screen_surface(context: str, notification_title: str) → None

	Ask to hand the conversation over to a screen surface.

This wraps ask_for_new_surface() for screen surfaces.

	Parameters

	
	context – The context that will be picked up on the new surface.

	notification_title – The title of the notification on the new
device.

	
ask_for_new_surface(capabilities: MutableSequence[str], context: str, notification_title: str)

	Ask to hand the conversation over to a specific surface.

Use ask_for_screen_surface() if you want to hand off to a
screen.

	Parameters

	
	capabilities – Capabilities that the new surface must have.

	context – The context that will be picked up on the new surface.

	notification_title – The title of the notification on the new
device.

	
ask_for_link(open_url_action: flask_dialogflow.google_apis.actions_on_google_v2.OpenUrlAction, dialog_spec: Optional[flask_dialogflow.google_apis.actions_on_google_v2.DialogSpec] = None) → None

	Ask for a link.

Unclear what this is for.

	Parameters

	
	open_url_action – The URL action to perform.

	dialog_spec – The dialog spec to use (unspecified).

	
ask_for_simple_selection(simple_select: flask_dialogflow.google_apis.actions_on_google_v2.SimpleSelect)

	Ask for a simple selection.

	Parameters

	simple_select – The selection options.

	
ask_for_list_selection(list_select: flask_dialogflow.google_apis.actions_on_google_v2.ListSelect)

	Ask for a selection from a list.

	Parameters

	list_select – The list with the selection options.

	
ask_for_carousel_selection(carousel_select: flask_dialogflow.google_apis.actions_on_google_v2.CarouselSelect)

	Ask for a selection from a carousel.

	Parameters

	carousel_select – The carousel with the selection options.

	
ask_for_collection_selection(collection_select: flask_dialogflow.google_apis.actions_on_google_v2.CollectionSelect) → None

	Ask for a selection from a collection.

	Parameters

	collection_select – The collection with the selection options.

	
ask_for_delivery_address(reason: str) → None

	Ask for a delivery address.

	Parameters

	reason – The reason for this request.

	
ask_for_transaction_requirements_check(order_options: flask_dialogflow.google_apis.actions_on_google_v2.OrderOptions, payment_options: flask_dialogflow.google_apis.actions_on_google_v2.PaymentOptions) → None

	Ask for the transactions requirements check.

	Parameters

	
	order_options – The order options to check.

	payment_options – The payment options to check.

	
ask_for_transaction_decision(proposed_order: flask_dialogflow.google_apis.actions_on_google_v2.ProposedOrder, order_options: flask_dialogflow.google_apis.actions_on_google_v2.OrderOptions, payment_options: flask_dialogflow.google_apis.actions_on_google_v2.PaymentOptions, presentation_options: flask_dialogflow.google_apis.actions_on_google_v2.PresentationOptions) → None

	Ask for a transaction decision.

	Parameters

	
	proposed_order – The order to propose.

	order_options – The order options to propose.

	payment_options – The payment options to propose.

	presentation_options – The presentation options to propose.

	
to_webhook_response_payload() → MutableMapping[str, Any]

	Render this conversation to the webhook response payload.

The response payload is not a AppResponse, but a custom,
Dialogflow-specific format.

	Returns

	A dict with the necessary response data.

	
class flask_dialogflow.integrations.actions_on_google.UserFacade(user: Optional[flask_dialogflow.google_apis.actions_on_google_v2.User] = None, user_storage_default_factory: Callable[[], T] = <class 'dict'>, user_storage_deserializer: Optional[Callable[[str], T]] = <function loads>, user_storage_serializer: Optional[Callable[[T], str]] = <function dumps>)

	A facade to the user object.

This wraps the User object and adds some additional features,
most notably the handling of the user storage de-/serialization. This class
is what is returned by
V2ActionsOnGoogleDialogflowConversation.user.

	
property user_id

	The User.user_id.

	
property id_token

	The User.id_token.

	
property profile

	The UserProfile.

	
property access_token

	The User.access_token.

	
property permissions

	The list of Permissions.

	
property locale

	The User.locale.

	
property last_seen

	When this user was last seen as a datetime object.

	
property last_seen_before

	The amount of time since the user was last seen as a timedelta.

	
property package_entitlements

	The list of PackageEntitlements of this user.

	
property user_storage

	The deserialized User.user_storage.

Deleting the user_storage resets it to the default factory. To ensure
that we don’t send and empty dictionary back to Google the user_storage
is set to None when it evaluates to False during serialization. Before
the next request it will then again be initialized with the default
factory, thus keeping the type consistent.

JSON handling

Helpers for JSON de/serialization. This module, together with marshmallow [https://marshmallow.readthedocs.io/en/3.0/index.html]
powers the serialization and deserialization of the Google API objects to
native, idiomatic Python classes. This system is part of the public API and can
be used by users to implement custom context classes.

Note

By JSON, we always mean plain Python data structures that
can be handled by json.dumps()/json.loads(), i.e. usually
dictionaries. Pythons type system does unfortunately not allow recursive
types, which is why we type JSON as MutableMapping[str, Any].

	
class flask_dialogflow.json.JSONType

	Mixin class that provides to_json and from_json methods.

Custom classes can inherit from this class and specify their marshmallow
schema in the class definition. The schema must be a subclass of
JSONTypeSchema. This class will then make sure that class
and schema are linked and add to_json and from_json methods to the class.
These methods completely abstract the schema and the marshmallow processing
and allow it convert instances of this class to and from JSON in the
simplest possible way.

Classes are defined as normal classes (optionally dataclasses), schemas as
normal marshmallow schemas.

Example:

from marshmallow import fields

class _CustomClassSchema(JSONTypeSchema):
 foo = fields.Str()
 bar = fields.Int()

@dataclass
class CustomClass(JSONType, schema=_CustomClassSchema):
 foo: str
 bar: int

CustomClass is now linked with its schema and has to_json()
and from_json() methods. They abstract the de-/serialization,
the user does not have to care about marshmallow or the schema anymore:

>>> CustomClass.from_json({'foo': 'baz', 'bar': 42})
CustomClass(foo='baz', bar=42)
>>> CustomClass(foo='baz', bar=42).to_json()
{'foo': 'baz', 'bar': 42}

This works with all marshmallow features and can thus be used to quickly
de-/serialize complex class hierarchies (such as
WebhookRequests). The only caveat is that the result of
Schema.load() will be spread into the classes init method, i.e. the
params must map to each other. It is therefore recommend to use plain
dataclasses as JSONTypes. However, both the to_json and from_json accept
schema and dump/load kwargs, should further customization be desired.

	Raises

	
	AttributeError – When this class was subclassed without specifying a
 schema and a schema could also not be found in a super class.

	TypeError – When the specified schema is not a JSONTypeSchema subclass.

	
classmethod from_json(data: MutableMapping[str, Any], schema_kwargs=None, load_kwargs=None)

	Instantiate this class from JSON.

	Parameters

	
	data – The data to load.

	schema_kwargs – Kwargs to pass through to this classes schemas init
method. See marshmallow.Schema for details.

	load_kwargs – Kwargs to pass through to this classes schemas load
method. See marshmallow.Schema.load() for details.

	
to_json(schema_kwargs=None, dump_kwargs=None)

	Dump an instance of this class to JSON.

	Parameters

	
	schema_kwargs – Kwargs to pass through to this classes schemas init
method. See marshmallow.Schema for details.

	dump_kwargs – Kwargs to pass through to this classes schemas dump
method. See marshmallow.Schema.dump() for details.

	
class flask_dialogflow.json.JSONTypeSchema(only=None, exclude=(), many=False, context=None, load_only=(), dump_only=(), partial=False, unknown=None)

	Base class for schemas for JSONTypes.

This class mixes in a make_obj method that is registered as a marshmallow
post_load hook. This ensures that the data will be loaded into a JSONType
class instance, not just a dict. The hook is registered here but the actual
object class is only accessed at runtime, after the schema has been linked
with its JSONType.

This class is set to exclude unknown fields by default. This is because one
of the core use cases of this class are custom context classes, and
Dialogflow adds its own fields there all the time. This can of course
always be overridden in subclasses.

	
class flask_dialogflow.json.ModuleLocalNested(nested: Union[str, marshmallow.schema.Schema], module_name: Optional[str] = None, *args, **kwargs)

	Nested field subclass that can be parametrized with the modules FQN [https://docs.python.org/3/glossary.html#term-qualified-name].

Nested marshmallow fields get the name of schema of the nested class as a
string. This string can be just the schemas name itself, but it is usually
more robust to give the fully qualified name with the module path. As our
schemas typically reside in the same module as the object classes we would
like to have the fully qualified name used automatically. This
fields.Nested subclass makes this possible by accepting the
module name as a string and then building the full name for every field
where it is used.

Example:

In some_api_module.py: Parametrize the nested field with the
module name by using a partial
from functoools import partial
Nested = partial(ModuleLocalNested, module_name=__name__)

class _SomeSchema(Schema):
 ...

class _SomeOtherSchema(Schema):
 some_nested_field = Nested('_SomeSchema')

The nested schema is now stored as some_api_module._SomeSchema

Templating

This library uses the same Jinja templating library as Flask, but with a custom
loader to support YAML files with many individual templates (since speech
responses tend to be very short). The loader also supports randomization to add
greater variability to speech responses.

	
class flask_dialogflow.templating.YamlLoaderWithRandomization(path: str)

	A simple template loader for YAML files that supports randomization.

This template loader loads all templates from a single, flat YAML file. The
file is loaded once during initialization and then only reloaded when a
change is detected.

It supports randomization in that if the template is an array it selects
one of the arrays elements at random. This can be used to add variability
to templates within the same context. The array elements can also be
2-element arrays themselves, were the second element is a number. This
number will be used to weigh the random choice. Elements without weight
default to 1.

Examples:

simple_template: Hello world!

A list template: All variants have equal probability (i.e. 50% here)
random_template:
 - Hi there, this is the first variant!
 - And this is the second variant.

Template with weights, default value is 1
weighted_template:
 - ['This is the first variant.', 0.5] # ~14% prob. (0.5/3.5)
 - This is the second variant. # ~29% prob. (1/3.5)
 - ['And this is the third variant.', 2] # ~57% prob. (2/3.5)

NOT allowed: Nested templates
outer_template:
 inner_template:
 - This would be the actual text (if it were allowed)!

Note that for randomization to work auto_reload has to be enabled on
the Jinja environment. Otherwise the env will cache the templates
internally and not call this loader. The loader itself will select a random
version of each template every time it is called, see get_source()
for details.

	Parameters

	path – The path to the templates YAML file.

	
get_source(environment: jinja2.environment.Environment, name: str) → Tuple[str, str, Callable[[], bool]]

	Get a template source.

Expects the template to be a key from the YAML file and looks it up in
the cached mapping, reloading it beforehand if the file was modified.
The uptodate callback returned as the third param always returns false
to force the environment to call this function every time and thus
trigger the random selection again. This in combination with the
auto_reload setting on the Jinja environment is necessary to make
randomization work.

	Parameters

	
	environment – The
Environment
to load the template from.

	name – A key from the YAML templates file.

	Returns

	The same (source, filename, uptodate) tuple as the BaseLoader.

	Raises

	
	TemplateNotFound – When the template name is not in the file.

	TemplateError – When the template files format is invalid (usually
 because of misquoted strings).

	
list_templates() → Iterable[str]

	List the templates of this loader.

	Returns

	An iterable of template names.

CLI interface

A special command group for Flask’s CLI interface [http://flask.pocoo.org/docs/1.0/cli/]. Adds an agent
sub command to the flask command which gives access to certain information
about the current Dialogflow agent. See also flask agent --help. The agent
itself is also available in a flask shell as agent.

	
flask_dialogflow.cli.intents(*args, **kwargs)

	List the registered intent handlers.

Prints a table with the registered intent names and their handler
functions.

	
flask_dialogflow.cli.contexts(*args, **kwargs)

	List the registered contexts.

Prints a table with the registered context names, their default factories
and whether they should be kept around.

	
flask_dialogflow.cli.integrations(*args, **kwargs)

	List the registered integration conversation classes.

Prints a table with the registered integrations (source and version), the
corresponding conversation class and its init kwargs.

Test helper

A few tools to make testing Dialogflow agents easier. The recommended way to
test Agents built with this library is the DialogflowAgent.test_request()
method, which simulates an end-to-end request through the agent. See also
Testing Flask Applications [http://flask.pocoo.org/docs/1.0/testing/] for more tips.

	
flask_dialogflow.agent.build_webhook_request(intent: Optional[str] = 'Default Welcome Intent', action: Optional[str] = None, source: Optional[str] = None, session: Optional[str] = 'projects/foo/agent/sessions/bar', parameters: Optional[Dict[str, Any]] = None, contexts: Optional[Iterable[flask_dialogflow.context.Context]] = None, payload: Optional[Dict[str, Any]] = None, is_fallback: Optional[bool] = False, dialogflow_version: Optional[str] = 'v2beta1') → Union[flask_dialogflow.google_apis.dialogflow_v2.WebhookRequest, flask_dialogflow.google_apis.dialogflow_v2beta1.WebhookRequest]

	Factory function to build a WebhookRequest.

Params not explicitly given are set to sensible defaults, allowing for
request construction with minimal effort. This functions will rarely be
used explicitly, but powers other test helpers under the hood, especially
DialogflowAgent.test_request(), which accepts the same kwargs as
this function.

Examples:

This builds a valid request to the FooIntent
build_webhook_request('FooIntent')

A slighly more complex request with params and context
from flask_dialogflow.google_apis.dialogflow_v2 import Context

build_webhook_request(
 intent='FooIntent',
 parameters={'some-date': '2018-10-02T19:30:26Z'},
 contexts=[
 Context('foo_context', parameters={'foo': 'bar'})
]
)

	Parameters

	
	intent – The requests intents display name.

	action – The requests action.

	source – The source from where this request was send to Dialogflow.

	session – The requests session. Must conform to the session str format.

	parameters – The dict of params parsed from the input text.

	contexts – An iterable of Context. Defaults to an empty list
when not given.

	payload – The platform-specific request payload.

	is_fallback – Whether this intent is a fallback intent.

	dialogflow_version – The Dialogflow version to use. Defaults to v2beta1,
which has all features.

	
class flask_dialogflow.agent.TestWebhookResponse(followup_event_input: Optional[EventInput] = None, output_contexts: List[Context] = <factory>, fulfillment_text: Optional[str] = None, fulfillment_messages: List[Message] = <factory>, payload: Dict[str, Any] = <factory>, source: Optional[str] = None, end_interaction: Optional[bool] = None)

	Response class returned from DialogflowAgent.test_request().

This is a subclass of WebhookRequest with a few extra methods
that help in making assertions against the response.

	
classmethod from_webhook_response(webhook_response: Union[flask_dialogflow.google_apis.dialogflow_v2.WebhookResponse, flask_dialogflow.google_apis.dialogflow_v2beta1.WebhookResponse])

	Classmethod to instantiate this from a normal WebhookResponse.

Used internally, should not be used by users.

	Parameters

	webhook_response – The normal WebhookResponse that should
be converted to this class.

	
text_responses() → Iterable[str]

	Get an iterable of all individual text responses.

Note that this yields only the generic Dialogflow responses, i.e.
responses set via conv.ask, not conv.google.ask.

	Yields

	The individual text responses.

	
has_context(display_name: str) → bool

	Check whether the response has a certain context set.

This does not check the lifespan of the context because None is a valid
lifespan that defaults to Dialogflows default lifespan.

	Parameters

	display_name – The display name to check for (i.e. the context name
without the session id).

	
context(display_name: str) → flask_dialogflow.context.Context

	Get a context by its display name.

Returns the Context object when it is part of this response.
Throws a ValueError when it is not.

	Parameters

	display_name – The display name to get (i.e. the context name
without the session id).

	Raises

	ValueError – When the context is not part of the response.

Changelog

Version 0.9.0

	Original implementation as developed by ONSEI internally

Index

 A
 | B
 | C
 | D
 | F
 | G
 | H
 | I
 | J
 | K
 | L
 | M
 | P
 | Q
 | R
 | S
 | T
 | U
 | V
 | W
 | Y

A

 	
 	AbstractIntegrationConversation (class in flask_dialogflow.integrations)

 	access_token() (flask_dialogflow.integrations.actions_on_google.UserFacade property)

 	action() (flask_dialogflow.conversation.V2DialogflowConversation property)

 	all_required_params_present() (flask_dialogflow.conversation.V2DialogflowConversation property)

 	alternative_query_results() (flask_dialogflow.conversation.V2beta1DialogflowConversation property)

 	app_request() (flask_dialogflow.integrations.actions_on_google.V2ActionsOnGoogleDialogflowConversation property)

 	as_list() (flask_dialogflow.context.ContextManager method)

 	ask() (flask_dialogflow.conversation.V2DialogflowConversation method)

 	(flask_dialogflow.integrations.actions_on_google.V2ActionsOnGoogleDialogflowConversation method)

 	ask_for_carousel_selection() (flask_dialogflow.integrations.actions_on_google.V2ActionsOnGoogleDialogflowConversation method)

 	ask_for_collection_selection() (flask_dialogflow.integrations.actions_on_google.V2ActionsOnGoogleDialogflowConversation method)

 	ask_for_confirmation() (flask_dialogflow.integrations.actions_on_google.V2ActionsOnGoogleDialogflowConversation method)

 	ask_for_date() (flask_dialogflow.integrations.actions_on_google.V2ActionsOnGoogleDialogflowConversation method)

 	
 	ask_for_datetime() (flask_dialogflow.integrations.actions_on_google.V2ActionsOnGoogleDialogflowConversation method)

 	ask_for_delivery_address() (flask_dialogflow.integrations.actions_on_google.V2ActionsOnGoogleDialogflowConversation method)

 	ask_for_link() (flask_dialogflow.integrations.actions_on_google.V2ActionsOnGoogleDialogflowConversation method)

 	ask_for_list_selection() (flask_dialogflow.integrations.actions_on_google.V2ActionsOnGoogleDialogflowConversation method)

 	ask_for_new_surface() (flask_dialogflow.integrations.actions_on_google.V2ActionsOnGoogleDialogflowConversation method)

 	ask_for_permission() (flask_dialogflow.integrations.actions_on_google.V2ActionsOnGoogleDialogflowConversation method)

 	ask_for_screen_surface() (flask_dialogflow.integrations.actions_on_google.V2ActionsOnGoogleDialogflowConversation method)

 	ask_for_sign_in() (flask_dialogflow.integrations.actions_on_google.V2ActionsOnGoogleDialogflowConversation method)

 	ask_for_simple_selection() (flask_dialogflow.integrations.actions_on_google.V2ActionsOnGoogleDialogflowConversation method)

 	ask_for_time() (flask_dialogflow.integrations.actions_on_google.V2ActionsOnGoogleDialogflowConversation method)

 	ask_for_transaction_decision() (flask_dialogflow.integrations.actions_on_google.V2ActionsOnGoogleDialogflowConversation method)

 	ask_for_transaction_requirements_check() (flask_dialogflow.integrations.actions_on_google.V2ActionsOnGoogleDialogflowConversation method)

 	ask_ssml() (flask_dialogflow.integrations.actions_on_google.V2ActionsOnGoogleDialogflowConversation method)

 	available_surfaces() (flask_dialogflow.integrations.actions_on_google.V2ActionsOnGoogleDialogflowConversation property)

B

 	
 	build_webhook_request() (in module flask_dialogflow.agent)

C

 	
 	Context (class in flask_dialogflow.context)

 	context() (flask_dialogflow.agent.DialogflowAgent method)

 	(flask_dialogflow.agent.TestWebhookResponse method)

 	
 	ContextManager (class in flask_dialogflow.context)

 	contexts() (flask_dialogflow.conversation.V2DialogflowConversation property)

 	(in module flask_dialogflow.cli)

D

 	
 	delete() (flask_dialogflow.context.ContextManager method)

 	diagnostic_info() (flask_dialogflow.conversation.V2DialogflowConversation property)

 	
 	DialogflowAgent (class in flask_dialogflow.agent)

 	display() (flask_dialogflow.integrations.actions_on_google.V2ActionsOnGoogleDialogflowConversation method)

 	display_name() (flask_dialogflow.context.Context property)

F

 	
 	facebook() (flask_dialogflow.conversation.V2DialogflowConversation property)

 	fallback_level() (flask_dialogflow.conversation.V2DialogflowConversation property)

 	from_context() (flask_dialogflow.context.Context class method)

 	
 	from_json() (flask_dialogflow.json.JSONType class method)

 	from_webhook_request_payload() (flask_dialogflow.integrations.AbstractIntegrationConversation class method)

 	(flask_dialogflow.integrations.actions_on_google.V2ActionsOnGoogleDialogflowConversation class method)

 	from_webhook_response() (flask_dialogflow.agent.TestWebhookResponse class method)

G

 	
 	GenericIntegrationConversation (class in flask_dialogflow.integrations)

 	get() (flask_dialogflow.context.ContextManager method)

 	
 	get_source() (flask_dialogflow.templating.YamlLoaderWithRandomization method)

 	google() (flask_dialogflow.conversation.V2DialogflowConversation property)

H

 	
 	handle() (flask_dialogflow.agent.DialogflowAgent method)

 	has() (flask_dialogflow.context.ContextManager method)

 	
 	has_context() (flask_dialogflow.agent.TestWebhookResponse method)

 	has_screen() (flask_dialogflow.integrations.actions_on_google.V2ActionsOnGoogleDialogflowConversation property)

I

 	
 	id_token() (flask_dialogflow.integrations.actions_on_google.UserFacade property)

 	init_app() (flask_dialogflow.agent.DialogflowAgent method)

 	inputs() (flask_dialogflow.integrations.actions_on_google.V2ActionsOnGoogleDialogflowConversation property)

 	integration() (flask_dialogflow.agent.DialogflowAgent method)

 	integrations() (flask_dialogflow.conversation.V2DialogflowConversation property)

 	(in module flask_dialogflow.cli)

 	
 	intent() (flask_dialogflow.conversation.V2DialogflowConversation property)

 	intent_detection_confidence() (flask_dialogflow.conversation.V2DialogflowConversation property)

 	intents() (in module flask_dialogflow.cli)

 	is_in_sandbox() (flask_dialogflow.integrations.actions_on_google.V2ActionsOnGoogleDialogflowConversation property)

J

 	
 	JSONType (class in flask_dialogflow.json)

 	
 	JSONTypeSchema (class in flask_dialogflow.json)

K

 	
 	kik() (flask_dialogflow.conversation.V2DialogflowConversation property)

L

 	
 	language_code() (flask_dialogflow.conversation.V2DialogflowConversation property)

 	last_seen() (flask_dialogflow.integrations.actions_on_google.UserFacade property)

 	last_seen_before() (flask_dialogflow.integrations.actions_on_google.UserFacade property)

 	line() (flask_dialogflow.conversation.V2DialogflowConversation property)

 	
 	list_contexts() (flask_dialogflow.agent.DialogflowAgent method)

 	list_handler() (flask_dialogflow.agent.DialogflowAgent method)

 	list_integrations() (flask_dialogflow.agent.DialogflowAgent method)

 	list_templates() (flask_dialogflow.templating.YamlLoaderWithRandomization method)

 	locale() (flask_dialogflow.integrations.actions_on_google.UserFacade property)

M

 	
 	ModuleLocalNested (class in flask_dialogflow.json)

P

 	
 	package_entitlements() (flask_dialogflow.integrations.actions_on_google.UserFacade property)

 	parameters() (flask_dialogflow.conversation.V2DialogflowConversation property)

 	payload() (flask_dialogflow.conversation.V2DialogflowConversation property)

 	
 	permissions() (flask_dialogflow.integrations.actions_on_google.UserFacade property)

 	play_media_response() (flask_dialogflow.integrations.actions_on_google.V2ActionsOnGoogleDialogflowConversation method)

 	profile() (flask_dialogflow.integrations.actions_on_google.UserFacade property)

Q

 	
 	query_text() (flask_dialogflow.conversation.V2DialogflowConversation property)

R

 	
 	register_context() (flask_dialogflow.agent.DialogflowAgent method)

 	register_handler() (flask_dialogflow.agent.DialogflowAgent method)

 	
 	register_integration() (flask_dialogflow.agent.DialogflowAgent method)

 	response_id() (flask_dialogflow.conversation.V2DialogflowConversation property)

S

 	
 	sentiment() (flask_dialogflow.conversation.V2DialogflowConversation property)

 	session() (flask_dialogflow.conversation.V2DialogflowConversation property)

 	set() (flask_dialogflow.context.ContextManager method)

 	show_basic_card() (flask_dialogflow.integrations.actions_on_google.V2ActionsOnGoogleDialogflowConversation method)

 	show_card() (flask_dialogflow.conversation.V2DialogflowConversation method)

 	show_carousel_browse() (flask_dialogflow.integrations.actions_on_google.V2ActionsOnGoogleDialogflowConversation method)

 	show_image() (flask_dialogflow.conversation.V2DialogflowConversation method)

 	(flask_dialogflow.integrations.actions_on_google.V2ActionsOnGoogleDialogflowConversation method)

 	show_order_update() (flask_dialogflow.integrations.actions_on_google.V2ActionsOnGoogleDialogflowConversation method)

 	
 	show_quick_replies() (flask_dialogflow.conversation.V2DialogflowConversation method)

 	show_table_card() (flask_dialogflow.integrations.actions_on_google.V2ActionsOnGoogleDialogflowConversation method)

 	skype() (flask_dialogflow.conversation.V2DialogflowConversation property)

 	slack() (flask_dialogflow.conversation.V2DialogflowConversation property)

 	source() (flask_dialogflow.conversation.V2DialogflowConversation property)

 	spark() (flask_dialogflow.conversation.V2DialogflowConversation property)

 	speech_recognition_confidence() (flask_dialogflow.conversation.V2DialogflowConversation property)

 	suggest() (flask_dialogflow.integrations.actions_on_google.V2ActionsOnGoogleDialogflowConversation method)

 	suggest_link_out() (flask_dialogflow.integrations.actions_on_google.V2ActionsOnGoogleDialogflowConversation method)

 	surface() (flask_dialogflow.integrations.actions_on_google.V2ActionsOnGoogleDialogflowConversation property)

T

 	
 	telegram() (flask_dialogflow.conversation.V2DialogflowConversation property)

 	tell() (flask_dialogflow.conversation.V2beta1DialogflowConversation method)

 	(flask_dialogflow.integrations.actions_on_google.V2ActionsOnGoogleDialogflowConversation method)

 	tell_ssml() (flask_dialogflow.integrations.actions_on_google.V2ActionsOnGoogleDialogflowConversation method)

 	test_request() (flask_dialogflow.agent.DialogflowAgent method)

 	TestWebhookResponse (class in flask_dialogflow.agent)

 	text_responses() (flask_dialogflow.agent.TestWebhookResponse method)

 	
 	to_json() (flask_dialogflow.json.JSONType method)

 	to_webhook_response() (flask_dialogflow.conversation.V2DialogflowConversation method)

 	to_webhook_response_payload() (flask_dialogflow.integrations.AbstractIntegrationConversation method)

 	(flask_dialogflow.integrations.actions_on_google.V2ActionsOnGoogleDialogflowConversation method)

 	tropo() (flask_dialogflow.conversation.V2DialogflowConversation property)

 	twilio() (flask_dialogflow.conversation.V2DialogflowConversation property)

 	twilio_ip() (flask_dialogflow.conversation.V2DialogflowConversation property)

U

 	
 	user() (flask_dialogflow.integrations.actions_on_google.V2ActionsOnGoogleDialogflowConversation property)

 	user_id() (flask_dialogflow.integrations.actions_on_google.UserFacade property)

 	
 	user_storage() (flask_dialogflow.integrations.actions_on_google.UserFacade property)

 	UserFacade (class in flask_dialogflow.integrations.actions_on_google)

V

 	
 	V2ActionsOnGoogleDialogflowConversation (class in flask_dialogflow.integrations.actions_on_google)

 	V2beta1DialogflowConversation (class in flask_dialogflow.conversation)

 	
 	V2DialogflowConversation (class in flask_dialogflow.conversation)

 	version() (flask_dialogflow.conversation.V2DialogflowConversation property)

 	viber() (flask_dialogflow.conversation.V2DialogflowConversation property)

W

 	
 	webhook_request() (flask_dialogflow.conversation.V2DialogflowConversation property)

Y

 	
 	YamlLoaderWithRandomization (class in flask_dialogflow.templating)

 nav.xhtml

 Table of Contents

 		
 Welcome to flask_dialogflow!

 		
 Tutorial

 		
 Installation and setup

 		
 Google APIs and serialization

 		
 Conversations and handlers

 		
 Templating

 		
 Contexts

 		
 Integrations

 		
 Actions on Google

 		
 Testing

 		
 Flask CLI and shell

 		
 API Reference

 		
 Agent object

 		
 Conversation objects

 		
 Contexts and Context Manager

 		
 Integration Conversation objects

 		
 Actions on Google Conversation object

 		
 JSON handling

 		
 Templating

 		
 CLI interface

 		
 Test helper

 		
 Changelog

 		
 Version 0.9.0

_static/file.png

_static/minus.png

_static/plus.png

